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NAVIER-STOKES COMPUTATIONS OF HORSESHOE 
VORTEX FLOWS 

G. B. DENG AND J. PIQUET 
CFD Group, LHN-URA 1217 CNRS,  ECN. Nantes. France 

SUMMARY 
The computation of the incompressible three-dimensional turbulent viscous flow about an aerofoil/flat plate 
junction is investigated. An iterative, fully decoupled technique is applied to the Reynolds-averaged 
Navier-Stokes equations (RANSEs) written in a non-orthogonal curvilinear body-fitted co-ordinate system. 
The results of the computations are compared with well-documented experiments. 
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1. INTRODUCTION 

The junction between a body and an appendage is a simple geometric configuration with 
a complex turbulent flow. Such configurations are found in many areas of fluid engineering such 
as wing-fuselage geometries, appendage-hull junctions of ships or submarines, blade-hub inter- 
sections on propellers, blade-end wall junctions of turbomachinery, high-rise buildings and 
bridge piers in rivers. The most important feature of the flow past such junctions is undoubtedly 
the horseshoe vortex system and the associated secondary flow which affects the drag, lift and 
heat transfer. A simplified description of this problem is considered here, namely aerofoil-flat 
plate junction flow. The considered aerofoil shape is a modified NACA 0020 with the nose section 
replaced by a 3 : 2 ellipse in order to make the vortex system more intense and to simplify the 
measurement task. Also, this wing shape, used in References 1 and 2, is more realistic than infinite 
chord wings, investigated for instance in Reference 3, which differ in the shape of the leading edge. 

While junction flows have promoted a great deal of experimental work, numerical solutions of 
the flow have received relatively little attention owing to the complexity of the flow field and to 
the occurrence of large regions of reversed flow which forbids the use of parabolic methods 
starting from upstream. The first Navier-Stokes computations can be credited to Briley and 
McDonald: who used a linearized block implicit scheme with an ADI-type splitting in order to 
solve at low Mach numbers the compressible Navier-Stokes equations for a laminar horseshoe 
root vortex created by the intersection of an elliptic strut and a flat plate (see also Reference 5). 
Most of the other solutions are focused on high-Mach-number compressible flows on 
wing-fuselage interactions and use a Baldwin-Lomax6 turbulence model (see e.g. Reference 7). 
For low-speed incompressible flows a very few contributions have dealt with this problem. 
Burke* has used the so-called INS3D flow solverg which is based on the artificial compressibility 
method and uses the Baldwin-Lomax model. Similar computations with a fourth-order explicit 
Runge-Kutta scheme and fourth-order explicit artificial dissipation have been performed in 
Reference 10. Owing to the severe CFL restriction inherent to explicit time marching, acceleration 
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towards the steady state uses local time stepping and implicit residual smoothing through an 
approximate factorization technique. However, convergence difficulties linked to high cell aspect 
ratios made it necessary to introduce several improvements in the definition of the artificial 
dissipation, which was made self-adjusting to the flow parameters, and in the time-stepping 
procedure. Also, a multigrid technique was implemented, although the generated solution 
indicated signs of heavy dissipation. Some extensive calculations using a collocative grid with 
a finite analytic method are presented in Reference 12. The method, apparently fast, uses 
a two-equation K--E turbulence model, except close to the wall where the &-equation is bypassed 
by means of the one-equation m0de1.l~ In References 14 and 15 numerical results are presented 
with a method similar to that of Reference 12, although it differed from Reference 12 mainly in the 
hybrid-type numerical scheme and the turbulence model used. 

Owing to the existence of very important experimental databases,’. ’ this geometry offers an 
opportunity to compare the numerical outputs of the computational method with experimental 
results involving massive separation and hence allows the validation of the numerical method on 
a case close to ‘real life’ situations. Apart from validation, the aim of the present work is to 
investigate the flow in more detail and to shed some light on significant aspects of the physics of 
the viscous-inviscid interaction. Such efforts are a prerequisite before more complex geometries 
involving one order of magnitude more points and computational time can be safely investigated. 

2. THE EQUATIONS 

We consider the equations of motion for incompressible flows. The exact RANSEs of continuity 
and momentum of the mean flow in dimensionless form are given by 

div U = 0, (1) 

au 1 
at Re 
- + v uu + vp + v * G=- v2u, 

where U, p and are the velocity vector, the pressure and the Reynolds stress tensor respectively. 
The resulting turbulent closure problem is solved by means of an algebraic viscosity model in 
which the Reynolds stress is linearly related to the mean rate-of-strain tensor through an isotropic 
eddy viscosity as follows: 

The standard Baldwin-Lomax model6 is used. Close to the root the length scale is simply taken 
as the minimum distance n to one of the two walls. This model has been selected because of its 
simplicity. Also, it avoids discontinuities of the eddy viscosity vT close to the leading edge of the 
aerofoil, while avoiding transition problems which must be dealt with if transport models for 
turbulent quantities are used. As a consequence, k in (3) is neglected with respect to pressure. 

For most practical applications the complexity of the geometry prevents the use of a Cartesian 
co-ordinate system { Y}. Numerical co-ordinate transformations are highly desirable in that they 
greatly facilitate the application of the boundary conditions and transform the physical domain in 
which the flow is studied into a parallelepiped computational domain {t i}  = {tl = {, 5’ = q, r3  = c } .  The most commonly used transformation is that of Thompson et a1.,16 which consists of 
solving a set of Poisson equations. This method is used here to generate two-dimensional C-type 
grids in planes x3 = z = constant parallel to the flat plate. Such grids are stacked in the z-direction. 

The partially transformed RANSEs are used in their convective form for the momentum 
equations. The contravariant velocity components ui ,  i =  1,2,3 along 5, q, c respectively, are 
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connected to the physical Cartesian components U “ along x” by 

Ju’=  bb U ” .  (4) 

Here and in the following the convention of summation between the same indices holds; also, 
indices a, b, . . . are associated with the Cartesian components while indices i, j, . . . are asso- 
ciated with the curvilinear components. J is the Jacobian of the transformation from the 
curvilinear co-ordinates to the Cartesian co-ordinates, which is computed as the volume in the 
physical space of the hexahedral element image of the corresponding unit cube of the computa- 
tional space. The b’ are the contravariant basis vectors divided by J ;  they are computed as the 
oriented areas of the faces of the hexahedral element images of the areas of the facets of the unit 
cube in the computational space, 

aR aR 
bf:=[bk],, with b’=-.x- i ,j,  k in cyclic order, (5 )  a p  a y  

so that the contravariant components of the metric tensor required are gi j=  J - ’ b i *  bj .  
The continuity equation is 

a 
a t  J - ’  T( Ju’)=O, 

while the developed convective form of the momentum equation~’~’’’ is written as the compact 
relation 

9 4<c + g ” 9,, + 9 3 3  dss = 2A,& + 2B,4, + 2c,4, + R,4* + s,. (7) 
In (7), 4 stands for any Cartesian velocity component U ’ = U ,  U’ 3 V, U E W; the source term 
S,, which includes pressure gradients and eventually turbulence contributions, as well as the 
convective coefficients A,, B,, C, and the unsteady term R,  are given in Appendix I. 

3. THE NUMERICS 

3.1. Convection-digusion discretization schemes: general form 

ordinates are normalized as 
Coefficients of &derivatives are evaluated at the centre P of the control volume and co- 

t*=t/ J g ” ,  v * = v / J s ” ,  C*=l/JP, (8) 
so that the normalized form 

4e.e. + +,* ,* + 4c*C * = 2 A #<* + 284,. + 2C4<* + R& + ( S 4 ) p  (9) 
is obtained, with 

A = (A&/ J g i ’ ,  B = (B,)p/Jg F’ 9 c = ( C,)p/Jg 8 3 R = (R,)P, 

for a parallelepipedic volume (in the computational space) whose sides are given by 

A t * = h = l / J g “ ,  AV*=k=1/Jg2’ ,  A ( * = l =  1/Jg33 

If P is the centre of the control volume, t is the time step and the index n -  1 refers to the known 
state, the discretization of (9) results in 
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where @ is the approximation to the solution 4 of (9). The index nb refers classically to 
neighbouring nodes (NE, NW, SE, etc.). The values of the influence coefficients Cnb and Cp depend 
on the discretization of hybrid type used for the momentum equation and are therefore omitted. 
From now on, *-symbols appearing in (9) are discarded. 

3.2. Discretization based on exponential schemes 

3.2.1. One-dimensional model. Instead of treating the advection and diffusion terms separately 
an advection-diffusion operator can be written as a single expression using the classical locally 
analytic solution of the linearized problem:’* 

4 < < - 2 A d < = ( C u @ i -  1 - @ i + c D @ i + , ) / c p = s ,  (1 la) 

CU=e”/(eA+e-”), CD = e-”/(e” + e - ” ), C,=(tanh A) /2A.  (1 1b) 

where Oi is the approximation of the solution 4 of the differential equation at node xi and 

The coefficients of the exponential scheme are always positive. It is second-order-accurate 
when the cell Reynolds number A is small and it behaves as an upwind scheme when convection 
dominates. Although the accuracy is similar to that of the hybrid scheme, this scheme is preferred 
since the coefficients resulting from this discretization vary smoothly, a factor which is favourable 
for convergence. The scheme (1 1) has been extended to multidimensional cases which are 
presented in the following. 

3.2.2. Multi-exponential ( M E )  scheme. The normalized transport equation can be split as 
follows: 

( ~ < , : - 2 A ~ 5 ) + ( ~ r l r l - 2 B ~ r l ) + ( ~ r s - 2 C ~ r ) = S , .  (12) 
Each split one-dimensional advection-diffusion operator can be expressed by the exponential 
scheme (1 1). 

3.2.3. Uni-exponential (WE) scheme.I4 In spite of the use of an exponential discretization, the 
ME scheme is found to be too diffusive. In order to decrease the numerical diffusion, a skew 
upwind scheme is preferred using the exponential discretization. The idea is briefly outlined below 
for the two-dimensional (t, q )  case. The normalized transport equation can be written as 

C d s s  - 2 J ( A 2  + ~ 2 ) d , 1  + (dtC + df/q - dsd= s,, (13) 
where s is the local advection direction. The first term can be expressed by the exponential 
discretization while other second derivatives are expressed by centred differences. A parabolic 
interpolation function (Figure 1) is used to express the intermediate values (DU and OD in terms of 
dependent variables; for instance, 

which results in a nine point formula. Extension to the 3D case is straightforward and a 27-point 
formula is obtained. Despite the fact that the 3D UE scheme is not a positive scheme, no serious 
difficulties have been encountered on the grid used. 

3.2.4. Uni-exponential blended (UEb) scheme. The major drawback of the UE scheme is that 
the variation of the source term S, is not taken into account. Since a centred difference scheme 
usually gives a good approximation, it can be combined with the UE scheme to improve the 
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Figure 1. Molecule for the uniexponential scheme (two-dimensional example) 

accuracy. The normalized transport equation is written as 

c 4 s s  - 2(1- U)J(  A2 + B2 )GI + 4<< + 4qq - 4 S S  - 2mJ(A + B2 = s,, (15) 
where c1 is a blending coefficient. All terms, except the first one which is expressed by the 
exponential scheme, are discretized using centred differences. Their use may introduce oscillations 
in the numerical solution. However, preliminary tests have shown that the best results are 
obtained with a blending coefficient a z 0.6. 

3.3. The coupling problem and the pressure equation 

In this work, following Reference 14, the well known (one-step) 'PISO' p r o ~ e d u r e ' ~  is used 
systematically. The main role of the coupling algorithm is to find an updated velocity field ui 
satisfying the discrete continuity equation resulting from (6): 

At the same time the discretized momentum equation (see (10)) can be written as 

A non-staggered cell centred grid is used in which the pressure the velocity unknowns share the 
same location (Figure 2(a)). Thus only one set of influence coefficients is used for the transport 
equations. In contrast, on a staggered grid, C in (17) would depend on a since it would be defined 
at cell faces of the mass control volume, e.g. C1 (resp. C,) would be defined at points d and u (resp. 
n and s). The use of a collocated grid therefore simplifies coding and leads to significant savings in 
computational time and storage. 

Now the problem is (i) to reconstruct the contravariant velocity components u i  needed at the 
control volume interfaces to ensure continuity and (ii) to avoid the chequerboard pressure 
oscillations. The interest of the staggered grid approach lies in the possibility of a direct 
substitution of mass fluxes (obtained from the momentum equation) into the continuity equation. 
However, when the CartCsian velocity components are the selected dependent variables, this 
argument works only for Cartesian co-ordinate systems in which the directions x" of the velocity 
components U do not differ from the directions 5 i ,  i = a, of the curvilinear co-ordinate lines. For 
other co-ordinate systems the required mass fluxes ui involve simultaneously the three Cartesian 
velocity components U " ,  which must be interpolated when not available from the momentum 
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Figure 2(a). Collocated cell-centred grid. Location of the unknowns: P,  U, V, W indicate the location of unknowns at 
points 0; U, V, Ware the Cartesian velocity components; points 0 indicate the location where fluxes (or contravariant 

components) are needed 

X 

Figure 2(b). Treatment of boundary conditions; hatched areas are mass control volumes (two-dimensional sketch) 

equation (i.e. when u#i). Thus the main interest of the staggered grid approach is lost on 
curvilinear co-ordinate systems. 

Instead of building ui from available neighbouring values, ui is linked to other dependent 
variables through a local approximation of a transport equation at points d, u, . . . where fluxes 
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are needed: 

A linear interpolation (r) (in the computational domain) is, however, used to build d a  and c but 
not the leading part of the pressure gradient at the cell interface.20 Using relation (4), the 
contravariant components necessary for the continuity equation are given by 

where the fact that C does not depend on a, i.e. the collocated character of the grid, is explicitly 
used in the identity. Substituting the discrete form of (19) into (17) gives the discrete form of the 
Poisson equation: 

For collocated grids the coefficients are given by A " = C J g " .  In contrast, A"= ca J -'bbb! for 
staggered grids (summation over a).  Although A" is in both cases symmetric, the geometric 
factors are not required at the same points so that the pressure matrix resulting from the 
staggered grid approach is not symmetric. This provides a third justification for the collocated 
grid approach. 

A significant aspect of any numerical method lies in the way boundary conditions are handled. 
This problem has been discussed widely in the open literature (see e.g. References 21 and 22 for 
a fundamental point of view). Following References 14 and 23, the control volume vertices are 
taken as the grid nodes while additional nodal unknowns are introduced on the boundary faces 
(Figure 2(b)). Although discrete molecules for the transport equations may be irregular close to 
the boundary, while locations for the interpolated variables may be far from the barycentre of cell 
centres, in the vicinity of topological singularities, this choice appears satisfactory. 

The most critical issue is the pressure condition over a boundary where the velocity field is 
specified. If the grid is orthogonal away from the boundary, pressure boundary unknowns do not 
enter the pressure equation since only the contravariant velocity component is calculated on each 
face of a control volume when building the pressure equation. Pressure derivatives evaluated at 
each cell face sum to the normal pressure gradient which drives the contravariant velocity 
component. For instance, close to the boundary 5' = ( z  the velocity at point d is along aR/a< so 
that [grad p]l does not involve points in the direction dR/d<'. If the grid is non-orthogonal away 
from the boundary, the following approximation is used: 

For the present problems the grid is orthogonal close to the far-field boundary so that (21) has no 
influence. At  the wall the grid is clustered so much that the one-side approximation (21) appears 
accurate enough. Moreover, although the grid is not orthogonal, (21) has a weak influence since 
ap/at' is multiplied by g l ' ,  which remains small. 

The reliability of the global method is strongly dependent on the way the pressure equation is 
handled since the pressure solver controls the global convergence of the method. In the present 
method all the fluxes are used to build a three-dimensional general pressure equation. The 
pressure solver is therefore based on a 19-point molecule. An alternative SLOR method is applied 
for the solution of the resulting algebraic problem. The main interest of this approach is that the 
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pressure matrix is symmetric and usually diagonally dominant. SLOR methods can therefore be 
expected to converge. 

4. RESULTS 

4.1. The test problem 

Apart from classical benchmark cases which are presented el~ewhere, '~ the validation 
procedure has been focused on a test geometry which consists of a hybrid profile of chord 
% = 25.9 cm and thickness F = 6.1 cm, composed of a 3 : 2 elliptical nose and a NACA 0020 tail 
joined at the location (0.18%) of maximum thickness and mounted perpendicularly between two 
flat plates. The chord Reynolds number is 500000. The wing is immersed in a fully turbulent 
boundary layer of momentum Reynolds number 15 OOO. A two-dimensional C-type grid (Figure 
3) is stacked in the vertical z-direction to get the three-dimensional grid: 80 grid points are 
located along the chord direction < (55 points along the wing), while 45 points are located both in 
the direction normal to the aerofoil and in the direction normal to the flat plate. Even if such 
a grid is somewhat too coarse to capture the aerofoil thin boundary layer, it is considered to be 
acceptable for the junction region. The solution domain is defined by -4 < x/% < 5 5 , O  < y / %  < 5 
and 0 < z/% < 2, the aerofoil being from zero to %. Standard flat plate mean velocity profiles are 
imposed at the q=gmal inlet part of the outer C-shape boundary. Parabolic conditions are 
imposed at the downstream boundary. Plane-of-symmetry conditions are imposed at the far-field 
boundary y=yma, as well as at the symmetry planes y=O and z=zmax. Solutions are obtained 
down to the solid surfaces using no-slip conditions. Starting from a zero pressure field, converged 
results are obtained on the 162000-point grid in about 300 iterations, which lower down the 
residuals by three orders of magnitude in about 90 min CPU time on the VP200 supercomputer. 

4.2. Two-dimensional situation 

The turbulent boundary layer thickness on the flat plate is about 0.25% and experiments' show 
that the influence of the flat plate can be neglected for z>0.5%, where the flow becomes 
two-dimensional. It is interesting to study this area of low viscous-inviscid interaction in order to 
investigate grid effects and the possible capture of the aerofoil boundary layer. 

0.75 

0.5 

0.25 

0.0 
-0.5 0.0 0.5 1.0 1.5 

Figure 3. Two-dimensional C-type grid in a plane z=constant 
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Figure 4. Evolution of the computed static pressure coefficient along the symmetry axis of the aerofoil and along its wall: 
0, potential flow computation; - , ME scheme; ----, UE scheme; - - -, UEb scheme. Grid 80 x 45 
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Figure 5. Evolution of the streamwise pressure gradient along the symmetry axis of the aerofoil and along its wall 0, 
potential flow computations; - , ME scheme; ----, UE scheme; - - -, UEb scheme. Grid 80 x 45 

Figure 4 presents the evolution of the wall pressure coefficient along the symmetry axis of the 
aerofoil and along the wall. The quasi-uniform velocity in the approaching flow meets a local 
region of adverse pressure gradient due to the obstruction created by the aerofoil. This rising 
pressure slows the flow and diverts it around the leading edge. As the flow accelerates on each side 
of the aerofoil, the pressure drops to a minimum near the area of maximum thickness of the 
appendage. The pressure then rises again and attains a maximum close to the trailing edge as 
a result of stagnation conditions there. Past the foil the pressure relaxes towards its ambient 
value. Except close to the leading and trailing edges of the aerofoil, the discrepancy between 
computed viscous flow and potential flow is very small, indicating a very low level of vis- 
cous-inviscid interaction. Differences are enhanced if the surface pressure gradient is considered 
(Figure 5), especially close to s=O*1 where the pressure gradient is most favourable. This strong 
discrepancy (important from the point of view of the boundary layer which is driven by this 
imposed pressure gradient) is due to the discontinuity in the curvature of the hybrid aerofoil 
shape which has been chosen in the test case in order to magnify the horseshoe vortex system. 
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Owing to the low level of viscous-inviscid interaction, the most difficult phenomenon to 
capture is the acceleration of the flow close to the leading edge: the streamwise velocity 
component U,,, at the abcissa of maximum thickness of the aerofoil (1.42 times the incoming 
velocity) is severely underpredicted by previous calculations.". 12* l4 A 2D calculation has been 
performed on the same (80 x 45) grid using three different advection schemes, namely the ME, UE 
and UEb schemes. Although the computed pressure fields are nearly the same, the predicted 
values of U,,, are 1.30U0, 1.34U0 and 1.38U0 respectively (Figure 6(a)). The predicted value 
resulting from a 2D potential flow calculation is 1.41 U o .  Refining the grid to 110 x 80 points with 
the UEb scheme indicates that the Navier-Stokes solution is close to the potential solution in this 
section and that it slightly underestimates the experiments: the velocity overshoot is 1405U0, 
very close to the potential solution which agrees with experiments (Figure 6(b)). 

Further downstream, computed U-velocity profiles are presented for the two mentioned grids 
in (Figure 7). On the fine grid the boundary layer thickness 6 appears to be underpredicted 
because of the turbulence model. In contrast, the coarse grid results indicate an overestimation of 

Figure 6(a). Streamwise velocity profiles U at the abcissa of maximum thickness of the aerofoil, x/W=O.18, with respect to 
the reduced normal distance y/W to the symmetry plane of the aerofoil: +, experiments;' 0, potential flow computation; 

-, ME scheme; ----, UE scheme; - - -, UEb scheme. Grid 80 x 45 
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v/c 
5 

Figure 6(b). Streamwise velocity profiles U at the abcissa of maximum thickness of the aerofoil, x/W=O.18, with respect 
to the reduced normal distance y/W to the symmetry plane of the aerofoil: 0, experiments;' A, potential flow 

computation; ~ , UEb scheme, grid 75 x 45; -----, UEb scheme, grid 110 x 80 
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6 associated with a high numerical diffusivity in the outer part of the boundary layer. Outside the 
boundary layer there is a uniform discrepancy of both potential flow and viscous flow solutions 
with experiments. This difference is attributed to blockage effects, as confirmed by the potential 
flow calculations presented in Figure 8. Taken as a whole, previous computations justify the 
choice of the UEb scheme for three-dimensional computations, since other tested upwind 
schemes do not appear so adequate in regions where the change in the pressure gradient is 
important. 

4.3. Three-dimensional situation 

The most important feature of the wing-body junction is the formation of a horseshoe vortex 
system in the junction regi~n.~~~***'~-'~~'~*'~ An overall picture of the flow is presented in 
Figure 9. Skin friction lines are visible on the flat plate and over the aerofoil as well as streamlines 
in the vertical symmetry plane, ahead of and behind the aerofoil. Owing to the adverse pressure 
gradient ahead of the aerofoil, a three-dimensional boundary layer separation results and the 
separation line wraps around the appendage and trails off downstream. Wall streamlines 

x/c=o.64 

O.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

y/c 

X/C=0.75 
I 

I 
1 ~ ~ 1 ~  1 " " 1 ' ~ " l ~ " " ' " ~ l ~ ' " l ' ~ ' ' l " " l " "  

a05 0.1 an 02 025 05 03 0.4 0.45 05 

y / c  

Figure 7. Streamwise velocity profiles U at x/W=O64, 0.75, 0.93 and 1.05 with respect to the reduced normal distance 
y/W to the symmetry plane of the aerofoil: 0, experiments;' A,  potential flow computation; ~ , UEb scheme, grid 

75 x 45; ----, UEb scheme, grid 110 x 80 
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7 X/C=1.05 

0.0 0.1 0.2 0.3 0.4 0.5 

v/c 
Figure 7. (Continued) 

converge from both sides towards this separation line, whose origin on the plate is a saddle point 
S ahead of the aerofoil in its plane of symmetry. A horseshoe vortex or a system of horseshoe 
vortices is generated in the leading edge region of the aerofoil, each leg having vorticity of 
opposite rotational sense and being located between the aerofoil and a surface issuing from the 
separation line. A secondary root vortex can be seen close to the root of the aerofoil; it leads to 
a small separated trailing edge zone Z also reported in References 10, 12 and 15. 

Figures 10(a) and 10(b) focus on the skin friction pattern over the flat plate. A comparison with 
oil flow visualizations is presented. The primary upstream saddle point S, located at 0.llV 
(Reference 1) or 0.47F (Reference 2) from the wing surface (Figure 10(a)), is found in good 
agreement with experiments' as well as the 'fishtail' streamline divergence F in the wake resulting 
from the sudden release of the spanwise component of the surface shear stress at the wing trailing 
edge. This allows the two longitudinal vortices to propel fluid towards the body with consequent 
divergence near the body surface. Also, the divergent line located close to the aerofoil indicates 
the existence of a counter-rotating root vortex. A similar pattern is visible from the visualization2 
in Figure 10(b). Apart from the primary saddle point, it is seen that accumulation of pigments 
builds up a line formed closer to the wing than S and that this line crosses, at M, the vertical plane 
of symmetry only 0.289 upstream of the wing. This line is considered in References 1 and 2 as 
being one of low streamwise shear which would divide the separated flow area into a strip of high 
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surface shear stresses, possibly generated by the time-averaged action of the horseshoe vortex, 
and a crescent-shaped region of apparently lower shear stress upstream. Figure 11 presents the 
computed isofriction levels and demonstrates that the explanation given in References 1 and 2 is 
wrong. Figure 10(b) indicates a more plausible explanation of the phenomenon. This line 
corresponds to the crest line of maximum vertical velocity W, as indicated by the isovalues of W. 

Figure 12(a) confirms the correct capture of the horseshoe system in the front (vertical) plane of 
symmetry of the wing. The primary horseshoe vortex is centred near x/U = -0.049, y /% = 0.008, 
closer to the flat plate than in experiments,' which give x/U= -0-047, y/U=O.O11. Also, 
a magnified view of the root region (Figure 12(b)) indicates two embedded root vortices. 
Although not visible in the experiments,' the larger of the two is reported in Reference 2 and its 
size, 0.0259, in the vertical direction also appears correctly predicted. However, the low- 
frequency periodic motion indicated by experiments' (Figure 12(c)) cannot be captured owing to 
the 'naive' turbulence model used and the local time-stepping procedure. 

The calculated mean static pressure coefficient on the flat plate is compared with experimental 
data in Figure 13. Because the uncertainty in C,  is between 2% and 3% (owing to the difficulty of 
assigning an equivalent reference pressure and to the intrinsic measurement uncertainties), it is 
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Figure 8. Influence of blockage on the streamwise velocity profiles U at x/V=O.lS, 064, 0.75, 0.93, 1.05 and 1.50 with 
respect to the reduced normal distance y/V to the symmetry plane of the aerofoil: 0, experiments;' A,  potential flow 
computation with blockage; - - -, potential flow computation without blockage; - , UEb scheme, grid 110 x 80 
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Figure 8. (Continued) 
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considered that the overall agreement is correct. The magnitude of C ,  decreases with the distance 
to the flat plate, the isopressures being distorted about 0-39- away from the wing surface near its 
leading edge. This is due to the lowering of the pressure in the vicinity of the junction horseshoe 
vortex. This is confirmed in Figure 14, which gives the pressure coefficient as a function of the 
normal distance from the aerofoil. With increasing distance to the wing, the pressure first 
increases to a local maximum value close to the divergent line, then drops to a local minimum 

Figure 9. Overall picture of the boundary flow, in the vertical symmetry plane of the aerofoil, on the flat plate and on the 
aerofoil surface. S is the saddle point, Z is the trailing edge separated zone and r is the secondary root vortex. UEb scheme, 

grid 80 x 45 x 45 

Figure 10(a). Skin friction pattern on the flat plate: upper part, computations; lower part, oil flow visualization of 
Reference 1. S is the saddle point and F is the fishtail streamline divergence. UEb scheme, grid 80 x 45 x 45 



114 G. B. DENG AND J. PIQUET 

I '0 0.5 0 

Figure lO(b).Skin friction pattern on the flat plate: left, flow visualization of Reference 2; right, isovalues of the vertical 
velocity component W. S is the saddle point and M is the origin of the crest line of W-values. UEb scheme, grid 

80 x 45 x 45 

-0.25 0.00 0.25 0.50 0.75 1.00 l. 
x/c 

5 

Figure 11. Computed isolevels of the skin friction coefficient. The given values are those of 100Cr. UEb scheme, grid 
80 x 45 x 45 

value near the primary vortex centre, rises again to a local maximum near the separation line and 
finally decreases to the far-field value. Similar trends have been observed in experirnent~~~ and are 
one of the most important characteristics of viscous-inviscid interaction. 

The most difficult aspect of numerical comparisons always lies in the restitution of velocity 
profiles. Trilinear interpolations were obviously required to make such comparisons. We first 
consider the aerofoil boundary layer. Computed streamwise velocity profiles as functions of y /% 
are compared with experiments' for several cross-sections x/%=constant in Figure I S .  For each 
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cross-section, velocity profiles are available for several depths z/U = constant. The comparisons 
indicate that discrepancies are significant close to the flat plate, especially at x/U=O.18 where the 
aerofoil thickness is maximum. Further away from the flat plate the agreement improves. Further 
downstream at x/V=0.75 and 1.5 in the wake the same trends can be observed; however, the 
discrepancy is lower. Analogous results can be found in References 8 and 12, where similar 
comparisons are presented. Isovelocity contours are presented in Figure 16 at sections x/W = 0.18 
and 0.64. Although the main features of the flow are correctly predicted, the underestimation of 
streamwise velocities is confirmed, with the result that the boundary layer thicknesses are 
overestimated on the flat plate and, more seriously, along the aerofoil. Similar comparisons are 
performed in Reference 8. The present results are only marginally better at x/V=0.18, but the 
improvement obtained further downstream is qualitatively significant: the shapes of the com- 
puted isolevels between 0.7 and 0.8 are similar to the experimental isolevels here, though the 
values do not fit. Such shapes, which are characteristic of the influence of the horseshoe vortex, 
are not visible in Reference 8. Also, isolevels of 1.0 and above given here are omitted in 
Reference 8. 

Taken as a whole, the present results share in common with results obtained by other authors’ 
serious underestimations of the streamwise velocity profiles and overestimations of the boundary 
layer thicknesses. There are several reasons for such a discrepancy. The most probable is the fact 

-.U -.09 -1M 4 7  -DO -1)5 -M -,OJ -.a -.Ol 0 

Figure 12(a). Global view of the horseshoe vortex system in the upstream symmetry plane of the aerofoil. Indicated 
abcissa values x/U, ordinate values y/W. UEb scheme, grid 80 x 45 x 45 
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X 

Figure 12(b). Magnified view of the embedded root vortices. Indicated abcissa values x/W, ordinate values y/U. UEb 
scheme, grid 80 x 45 x 45 

Figure 12(c). Time mean velocity vectors in the plane of symmetry. Solid, dashed and dotted lines show bimodal regions 
for the U-, V- and (U- V)-component velocity histograms respectively (taken from Reference 2) 
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PRESSURE COEFFICIENT ON THE FLAT PLATE 

CAL. 
I 

Figure 13. Mean static pressure coefficient on the flat plate: uDDer Dart. comDutations with the UEb scheme on an _ -  . . 
80 x 45 x 45 grid; lower part, experimental data. 

CP VARIATDN NORMAL TO THE WING 

0- 
0 

0 
0.0 0.1 02  0.3 0.4 0.5 

S 

Figure 14. Variations in the pressure coefficient as a function of the normal distance to the wall taken from a point close 
to the leading edge at a distance YO from the symmetry plane (see legend) 

that the grid is too coarse away from the aerofoil, although the need for high resolution in 
a thickened viscous zone is weaker than for the thin boundary layer case of low interaction 
considered in Section 4.2; this is confirmed by the fact that the grids used are roughly the same in 
References 8, 10 and 12 and here. Also, the slightly underestimated pressure peak for the lowest 
values of y/W due to blockage effects is fully consistent with measured higher velocities. Another 
possible reason is that no attempt has been made to explicitly model transition on the foil or to 
take into account the trip-wire used in the experiments. Finally, deficiencies of turbulence 
modelling might also partly explain the discrepancies. 

5. CONCLUSIONS 

A general, fully elliptic numerical method for the solution of the RANSEs has been developed and 
applied to wing-body junction flow. The method uses a system of numerically generated 
curvilinear co-ordinates and retains the Cartesian velocity components as dependent variables, 
a non-staggered grid, a segregated approach in which an SLOR-type pressure solver couples 
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STREAMWISE VELOCITY CONTOUR 

121 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 

v/c 
Figure 16(a). Streamwise isovelocity contours at x/U=O.18: left, experiments;' right, computations with the UEb scheme 

on an 80 x 45 x 45 grid. Isolevels are specified 

STREAMWISE VELOCITY CONTOUR 
X/C=0.64 

-0.4 -03 -0.2 -0.1 0.0 0.1 02 0.3 0.4 

v/c 
Figure 16(b). Streamwise isovelocity contours at x/U =0.64 left, experiments;' right, computations with the UEb scheme 

on an 80 x 45 x 45 grid. Isolevels are specified 

velocity and pressure fields, and a local time-stepping method. The following conclusions emerge 
from this study. 

With respect to the modelling ofj7ow characteristics, the main features of the flow are captured. 
In particular, the viscous-inviscid interaction gives rise to a pressure field which looks in good 
agreement with experiments. The main characteristics of the horseshoe vortex system, including 
the location of its centre, the size of the secondary root vortex and the existence of a small trailing 
edge root separation, appear fully captured and a plausible explanation is given for the interpreta- 
tion of oil flow patterns. The description of the mean velocity flow field in the thin boundary 
layers can be also considered as correct insofar as enough points are available in the region 
concerned. However, the omissions of blockage effects and of the transition model are believed to 
be responsible for most of the departure between computed and measured velocity profiles. Also, 
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the lack of resolution in the transverse horizontal direction does not allow correct capture of the 
thin foil boundary layer. 

With respect to the numerical methodology, it is felt that improvements could result from one of 
the following three points. 

(i) The Convergence problems. The pressure solver is the most time-consuming part of the 
method (about 50%). Also, the segregated PIS0 approach needs to be so severely 
underrelaxed in the first iterations that it cannot be considered as a fully reliable and 
robust procedure. Evidently, still more work is needed on these convergence difficulties, 
especially in connection with improved convection4iffusion schemes. 

(ii) The grid problems. The optimization of the location of grid points over the flow domain 
cannot be considered as fully satisfactory. While the stretching control functions account 
here only for the friction, the description of the outer part of the boundary layer is 
considered to be slightly too coarse. 

(iii) The physical models. Although the flow is mainly pressure-controlled, improvements in the 
turbulence models might lead at least to improved length scales. However, it is considered 
that an unbiased judgement over turbulence models will be conditioned by significant 
progress on the two aforementioned points. 
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APPENDIX I 

A,, B,, C,, R,  and S ,  in (7) are given by 

J 

U U  = CU = dU = 1, b U  = 2, ~y =by  = dy = 1, CV = 2, a w  = bw = CW = 1, dw = 2. (23) 

The additional source terms contain classically the pressure gradients and eventually the turbu- 
lence contributions. For instance, for the U-momentum equation 
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It is seen that the convective form needs the functionsf’, which can be seen as purely geometrical 
coefficients or defined as stretching functions 

APPENDIX 11: NOMENCLATURE 

local convective coefficients (see (7)) 
aerofoil chord 
pressure coefficient, - ( p - p m ) / 0 . 5 p  U 
metric tensor of curvilinear co-ordinate system 

pressure 
local curvilinear abcissa along wall streamline 
source term in generic equation (7) 
source te,rm in (9) with crossed second-order &derivatives 
element area vector (see ( 5 ) )  
velocity vector 
contravariant velocity ( 5 ,  q, C )  components 
physical Cartesian velocity components 
Reynolds stress 
Reynolds number 
effective Reynolds number, (Re- ’ + v T ) -  ’ 
aerofoil thickness 
generic momentum variable 
time step 
as exponent: actual discrete time 
as indices: upstream, downstream, central points 
as indices: cardinal points in current central (-station 

Jacobian, D(x, Y,  z)/D(5, v , O  
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